skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bandikatla, Chaitanya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We revisit the classical spectrum allocation (SA) problem, a fundamental subproblem in optical network design, and make three contributions. First, we show how some SA problem instances may be decomposed into smaller instances that may be solved independently without loss of optimality. Second, we prove an optimality property of the well-known first-fit (FF) heuristic. Finally, we leverage this property to develop a recursive and parallel algorithm that applies the FF heuristic to find an optimal solution efficiently. This recursive FF algorithm is highly scalable because of two unique properties: (1) it completely sidesteps the symmetry inherent in SA and hence drastically reduces the solution space compared to typical integer linear programming formulations, and (2) the solution space can be naturally decomposed in non-overlapping subtrees that may be explored in parallel almost independently of each other, resulting in faster than linear speedup. 
    more » « less
  2. null (Ed.)